Impulse Correlation for Partially Filled Detonation Tubes
نویسندگان
چکیده
منابع مشابه
Detonation and Transition to Detonation in Partially Water-Filled Pipes
Detonations and deflagration-to-detonation transition (DDT) are experimentally studied in horizontal pipes which are partially filled with water. The gas layer above the water is stoichiometric hydrogen–oxygen at 1 bar. The detonation wave produces oblique shock waves in the water, which focus at the bottom of the pipe due to the curvature of the walls. This results in peak pressures at the bot...
متن کاملSingle-Cycle Impulse from Detonation Tubes with Nozzles
Experiments measuring the single-cycle impulse from detonation tubes with nozzles were conducted by hanging the tubes in a ballistic pendulum arrangement within a large tank. The detonation-tube nozzle and surrounding tank were initiallyfilledwith air between 1.4 and 100kPa in pressure simulating high-altitude conditions.A stoichiometric ethylene–oxygen mixture at an initial pressure of 80 kPa ...
متن کاملDetonation Tube Impulse in Subatmospheric Environments
Thrust from a multicycle pulse detonation engine operating at practical flight altitudes will vary with surrounding environment pressure. We have carried out the first experimental study using a detonation tube hung in a ballistic pendulum arrangement within a large pressure vessel to determine the effect that the environment has on the single-cycle impulse. Air pressure decreased below 100 kPa...
متن کاملEffect of Porous Thrust Surfaces on Detonation Transition and Detonation Tube Impulse
As pulse detonation engine development matures, it becomes increasingly important to consider how practical details such as the implementation of valves and nozzles will affect performance. Inlet valve timing and valveless inlet designs may result in flow of products back upstream and, consequently, reduction in impulse over the ideal case. Although proper inlet design or operation under flowin...
متن کاملMulti-objective Crashworthiness Optimization of the Aluminum Foam-filled Tubes
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimization of the automotive energy absorbing components. In this paper, axial impact crushing behavior of the aluminum foam-filled thin-walled tubes are studied by the finite element method using commercial software ABAQUS. Comparison of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Propulsion and Power
سال: 2004
ISSN: 0748-4658,1533-3876
DOI: 10.2514/1.4997